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A S Y M P T O T E  O F  T H E  B A S I C  E Q U A T I O N  F O R  P E R T U R B A T I O N  

P R O P A G A T I O N  I N  A L O W - V I S C O S I T Y  T W O - D I M E N S I O N A L  

M E D I U M  

D. B. Rokhlin UDC 532.516 

We will assume that the process of  perturbation propagation in a viscous medium is described by the equation 

= '>" " t " '  

in particular, this is valid for a viscous gas. 

At e = 0 the basic solution for the operator P has a singularity on the front: 

o(t - R )  
~: - z=(? - R2) w 

(where R = (x 2 + y2)1 /2 ,  0 is the Heaviside function). For the case e # 0 it is continuous, and thus must be a function of  the 

boundary layer type in the vicinity of  the front as e ~ 0. The present study will construct asymptotic expansions of the 

fundamental solution for the operator P in terms of the parameter o~ = t]~ 2 ~ 00 in three regions: ahead of  the front, behind 

the front, and in the vicinity of  the front. 
1. Integral  Representation. We will apply to the equation P~" = 5(x, y, t) a Fourier transform over the spatial 

variables, f'md the solution of  the corresponding ordinary differential equation in analogy to [1, p. 200], and return to the 

Fourier representation: 

o ( 0 7  ( : ~  ~ ~h"o(r)t 
= " - ~ - ~ e x p l - - ~ r * t ) T r E o ( r R ) d r  

(C~O(P) = - , Jo is a Bessel function). Taking the Laplace transform of this expression, we obtain 

- ( ) f e x p ( - p t ) r  = -~f "p rJ~ 1 e2p) g~  " pR 
2 + (l + ,20): = z~(l + (1 ~- f ip)v i  

0 
0 

(where K 0 is a Macdonald function). Here we make use of Fubini's theorem and the expression presented on p. 264 of [2] and 

Eq. (6.532.4) from [3, p. 692]. Then, using an inversion formula with consideration of the replacement of variables 

p = (z 2 - 1 ) / e  2 (1.2) 

and Eq. (9.238.3) of  [3, p. 1077] we f'md 
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- 2~f fa i t  z 2,1; 22o~ z - d z ,  (1.2) 

where ,I, is a degenerate hypergeometric function; X = R/t; co = t /d  is a large parameter; the contour C is the image of a 

vertical line with the replacement of  Eq. (1.1); q(z) = z 2 - -  1 - -  X(z - -  I/z). 

The function w = z - -  1/z maps a region d = {z:Rez > 0, I z I > 1} into the region d~ = {z:Rez > 0}, the region 

d 2 = {z:Rez > 0, I z I < 1, z E (0,1)} into the region d~ = {z:Rez < 0, z E ( -  oo, 0)}, the boundary of  region d 1 onto 

the imaginary axis, and the interval (0, 1) into the ray ( - o o ,  0). Therefore the right semiplane with section [0, 1] is region 

in which the integrand is holomorphic, and the point z = 1 is a logarithmic branching point. 

2. Crossing Point and Line of  Most Rapid Descent. The crossing points satisfy the equations q'(z) = 0: 

2 
- ~z a - -~= 0. (2.1) 

Equation (2.1) has a single real root z 1 > 0 (Descartes's law of signs) and two complex conjugate roots in the left semiplane 

(Raus-Gruvi tz  theorem). The latter will not be considered further. We will note the following easily verifiable properties of 

the root Zl: 

a) the crossing point z 1 is simple: q"(z 1) > 0; 

b) atX = l z  1 = 1; 
c) the function zl = zl(X) is monotonically increasing; 

d) q(z 1) < 0 f o r X  # 1; 

e) i f l m z  = 0 ,  z > z 1, then q'(z) > 0. 

It is clear that z 1 can be calculated by Cardano's formulas. Using a Newton diagram we fred 

z 1 =  1 + ( , I -  1 ) / 2 +  .... , l -* 1. (2.2) 

Let z = ( + i~/. The equation of the line of most rapid descent will be defined from the relationships Imq(z) = 

Imq(zl), Req(z) < Req(zl): 

( z ~  - a ) ( $ '  + ,12) - a = o. (2.3) 

it follows from Eq. (2.3) that ( > X/2, the line of most rapid descent is symmetric about the real axis and admits the explicit 

representation ( = ((r/). The function ( = ~(~/) is monotonically increasing for r/ < 0 and monotonically decreasing for 7/ > 

0. Note also that (0/) -" X/2 as ~ --- + oo.  

We will denote the line of most rapid descent by L. Let P = I z I , ~ = arg(z). As can easily be shown, for the arcs 

of circles C 1, C 2, located between C and L, 

Req(z) = p2cos(2,p) - apcosQp) + O( I )  < 0 

for sufficiently large o. In accordance with Eq. (13.5.2) of [4, p. 325] the degenerate hypergeometric function will have a 

power law asymptote for large values of the argument: 

R* ,1; ffi 2 ( - 1 ) *  * * k,,e k !~ ,*V2 + R n ( z ) "  (2.4) 

Here RN(Z) = O(z -N- l /2 )  as I z [ --, oo, I ~ [ < 3~r/2, (1/2) k = P(k + I/2)/r(1/2) is the Pochgammer symbol. Then for 

z 1 > "1 the contour C can be deformed into L. Other deformations of the contour which will be performed below can be 
similarly justified. 

We will now write in general form the basic representation of the function ~', which we will then concretize. We 

assume that we have deformed the contour C into some Contour K = K~ tJ (K\K~) and that the integral I~ over K\K~) is 
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exponentially small as compared to the integral over K~. Expanding the function ~,, with Eq. (2.4) and substituting this 

expansion in Eq. (1.2), we obtain 

I ~v-1 1 I/2 
~'~ t _ D k k  I"X /J  ffi ~ - ~  ~ ,  , k!(2j.)++V,,o]._+~ + I .  + I+; (2.5) 

(§ = f e'x z ")) z - K ~  dz; (2.6) ./,' 

+,+ 

We will call J+ the reference integral. 
3. Asymptote  Ahead of  the Front :  ), > 1, oJ --, o, .  In this case we will integrate along the line of most rapid descent. 

Let L~ 9 z 1 be a Segment of  that line of  length ~. We take K = L, K~ = L 6. Then from the fundamental property of  the line 

of most rapid descent we have I~ = O(exp(~q(z 1) - -  o,~,)), -y > 0. 
To calculate reference integral (2.6) we make the replacement 

r - q(z~) = - ~ .  (3.1) 

By the theorem of the inverse function, in some vicinity of the origin on the plane, w is defined by the holomorphic function 

z = z(w), which reduces Eq. (3.1) to the identity: 

z = z ( w )  = z I + l ( 2 / q " ( z l ) ) V 2  w + . . .  

The inverse representation has the form 

w = w ( z )  = ( q ( z l )  - q ( z ) )  v2  = - t ( q " ( z l ) / 2 ) V 2 ( z  - z l )  + . . .  (3.2) 

The image of the contour L~ for Eq. (3.2) is then the segment of the real axis [-c~,/8],  ~ , /8  > 0: 

# 
,1" = f exp (o~q(z l )  - tow~)G(w,v)dw, G(w,v) -- (z~Cw)z,+l( w)- I)" dw 

- a  

By Watson's lemma [5, p. 57] we find 

F -- exp(coq(zl))~ F(n + I/2) a~G 
.-o ':+v2(2'0' 7~(0'v)" (3.3) 

Equation (3.3) shows that the terms of series (2.5) form an asymptotic scale. To justify this expansion the following coarse 
estimate of  the residue of Eq. (2.7) is sufficient: 

Iz,,I ~ Aexp(wq(zl))r.o-N§ 

where A is independent of ~. 

We det'me the coefficients in the expansion of (3.3) with the Cauchy formula 

~ 'o  n! ,-G(w,v) n.' r (-'2 - I)" , 
= . �9 

yoo 

n e t  v 

(:-:)I = '"*,lira dz ~[[ w(z) J z "+' )' 
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where 3 / is a closed contour surrounding the origin in the plane w, while 3'" is its image in the plane z. Having used this 

formula, we write the main term of expansion (2.5): 

= r 

2#(zl(z ~ - l )q"(zl)Rt)V2 
+ O(~-lexp(o~q(zl))). (3.4) 

it is obvious that the expression thus obtained is non-uniform as X --, 1 + 0. 

4. Asymptote Behind the Front:  h < 1, ,0 --* o,. Considering the z t < 1, we take the integration contour S as the 

lower part of the line of most rapid descent, the segment [z l, 1 - 8 ]  following the lower boundary of the segment [0, 1], the 

circle S~ with center at the point z = 1 and radius 8, the segment [ 1 - 8 ,  zt] along the upper boundary of  the segment, and the 

upper portion of  the line of most rapid descent. Here 8 is some small positive number. 

We take K = S, K~ = S~ in Eqs. (2.5)-(2.7). It then follows from the properties of the function q(z) that the point z 

= 1 lies on the relief surface Re q(z) above the contour S\S~. In as much as q(1) = 0, we have I~ = O(exp(-arr)) ,  3' > 0. 

To calculate the reference integral (2.6) we make the replacement q(z) - -  q(1) = w, obtaining 

.V = f exp(o)w)v.rO(w,v)dw, Q(w:,) = 
s~ 

(z2(w) - t)" dz 
w,z,+1(w) dw(W)" 

The closed contour S~ surrounds the origin in the plane w and moves in the positive direction (counterclockwise). The function 

Q(w, v) is holomorphic in the vicinity of the point w = 0. In analogy to the preceding, with the Cauchy formula we find 

2; 

.O,o.,=.l{ . ) a,," " ~,-i (*-2) .... ~(=+l) ~*~ 

( - D "  (" +=-J~ _1 r ( ,  + ,, + r + t) 
r!l!s!(n - s)! 2 " * J ~ l ( l  2) . . . . . .  1 r(v + n + l) 

(4.1) 

(where r, j, s are non-negative integers). 

We will now expand Q(w, v) in a Taylor series in the vicinity of the origin and make use of  Watson's lemma for 

integrals over a loop [5, p. 272]: 

M - 1  

~ . . . . .  < 4 . 2 >  r = Z~t . ! r ( - .  - n) (O,v) + 1~. 
nsO 

Here I1M = O ( r  It follows from Eq. (4.2) that all terms of series (2.5) are of the order of  co ~ = 1. After substitution 

of  Eq. (4.2) in Eq. (2.5) and regrouping, we have 

M-I N - I  

1 2 ;  2 ;  a , o ) _ , + l ~ + ~ + 1 6 ,  (4.3) 
- -  ~ V 2 t  n-O k-O 

where 

1 1 a'Q 

a", = ( -1)*  k!n!(22)k+V2r(k+l/2_n) ; ia = O(o:u).  

We will assume that lira I~r = 0, lira 2 Iu~ = O(oTu). Then, transforming to the limit as N --, oo in Eq. (4.3), we 
N ' * =  N - t . n  

obtain the asymptotic expansion 

"~ -- ~ o ~ - ~ ;  (4.4) 
n s 0  
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1 ~ an (4.5) 
~n -- ~Vlt a,,u- n " 

For 1/3 < ~, < 1 the series of Eq. (4.5) converge and are expressible in terms of a hypergeometric function: 

22/ '~" I' (n + ])! 
~, = ~ m ~ . + 1  z . ~ ( -  Y . . . .  x 

u t2 (1-2.) '§ r!fls!(n-s)! (4.6) 

1 [---[I 1 l _ n -- r;, 2__.~.._1 t • 
e ( l  - - n - , ) '  1 

~ (a)n(b)tt . 

Setting n = 0 in Eq. (4.6) and using Eq (5.2.11.16) from [6, p. 710], we fred 

1 1 ~-~ 1 (4.7) 

Thus, ~'0 is the fundamental solution of the degenerate problem. 
2 Thus, if our assumption regarding the behavior of the residues I N, I MN, is true, the asymptotic expressions of Eqs. 

(4.4), (4.5) are valid for 1/3 < ), < 1. 
Independently of the above, we will now obtain analogous expressions for the case 0 < ), < 1/3. To do this, we 

transform the integrand of Eq. (1.2). Let fo(z) be an integer function. In accordance with Eq. (13.1.6) of [4, p. 322] we have 

~Ij(-12.1;z) = -u-1/21Fl(~l;z)ln(z)+ fo(Z); 

(a)k /, ,Fl(a;b;z) = 
k-o (b)k k!" 

(4.8) 

(4.9) 

We will integrate over the contour S. Since the integral of a holomorphic function over the closed contour S~ is equal to zero, 
after substitution of Eq. (4.8) into Eq. (1.2) and integration of series (4.9) we obtain 

N-I (Ilk co ~ ka.F. 
= - ~ - ~ t  ,Z~o. ~ 2 2 c o ) - ~ " 1 " *  + ~ + I,. (4.10) 

Here I~ is the integral of the series residue. Note that lim 

fred 

13 = 0. Differentiating asymptote (4.2) with respect to v, we 

~_l , . ,  = z~:(_1).+,.: (n+ ~):~ ~, 
nvco.+.+: (0,k) + 

nlO 
(4.11) 

where 14 = O(co - M - k - l )  and the following relationships are used: 

0 I 

- o :I.-. re-, - n )  
= (-l)"+**l(n + k)!. 

It follows from Eq. (4.11) that all the terms of series (4.10) are of the order of o: ~ = 1. We substitute Eq. (4.11) in 
Eq. (4.10): 
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Here 

M - I  N - I  

I E ~ ,8'~-"+i3N +Isu~.+la. 
n~O k - O  

(n + t)! (]) 
fl~ = (_l).+k k -~w n!(t,t)2 (~a) ~ (0,~,). 

(4.12) 

We assume that 

(4.4), where 

lim I~I,N = O(c0-M). After transition in Eq. (4.12) to the limit as N ---, oo we arrive at expansion 
N ~ u n  

~, -- ~'; �9 (4.13) 
k - O  

In analogy to the preceding, with the aid of Eq. (4.1) we f'md that for 0 < X < 1/3 the series for ~'o converges to the 
fundamental solution of the degenerate problem, while the remaining series of Eq. (4.13) can be expressed in terms of the 

hypergeometric function: 

(-7- -1)" X" t_lX'+*. (n § J3! 
nt2 (1 - 2) ,§ . . . .  r!flsI(n - s)! 

r ( n  + r + I ) F ( I  2 ~ 1 )  (4.14) 
" + "  + 1 ; 1 ;  _ . 

Taking into account Eq. (15.3.7) of [4, p, 373], 

: 1  7,,, + , + 1;1; = .-VYr . u ; u T) 

FI(  1 1 1 2----~1 
• 2 2 '  2 '  2 n - -  r;, , 

we conclude that the functions of Eq. (4.14) are analytical continuations along X of the functions of Eq. (4.6) on the interval 

(0, 1/3). This fact, together with the correct expression for ~'o confirms the validity of our assumption as to the behavior of 

2 I5M N to a certain degree. the residues I N, IM,N, , 
5. Uniform Expansion in the Vicinity of  the Front.  ~, ~ 1, ~ --- a , .  In Eqs. (2.5)-(2.7) we take K~ = C~, K = C~ 

U (L\L~). Here C~ is a small arc, intersecting the real axis to the right of the valley point z 1 and the branching point z = 1, 

while the contour L~ is as defined in Section 3. 
We will calculate the reference integral by Bleistein's method [7]. It will be convenient to integrate over the entire 

contour K in Eq. (2.6) and assign the corresponding exponential error to I~. 

We will consider the equation 

q(z) = - ( w 2 / 2  + bw), (5.1) 

where b = i(2 I q(zl) [ )l/Zsign( k - -  1). Within a certain vicinity of the most rapidly descending curve, containing the contour 

C~ and the point z = 1, a holomorphic function is defined which transforms Eq. (5.1) to the identity: 

w = w(z) = - b  + (b 2 - 2q(z)) v2. 

It will suffice to determine the sign of the root in Eq. (5.2) on the most rapidly descending curve: 

(5.2) 

sign((b 2 - 2q(z)) ~'2) = sign(Rez), z ~ L. 
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Upon transformation of Eq. (5.2) the point z = 1 transforms to the origin of the coordinate system, the point z = z 1 

into the point w = - b ,  and the contour K into the contour K 1, coincident with the straight line Im w = - b  outside some 

vicinity of the origin. The reference integral then transforms to: 

K 1 

(5.3) 

Here g(w, v) = 
(~(w) - t)" i ,/~. 

~s a holomorphic function. 
z ( w )  " §  ~t' dw 

To calculate the integral of  Eq. (5.3) we represent the function g(w, v) in the form 

g(w,v) = to(V) + ~,t(v)w + w(w + b)g~(w,v). 

Then 

I" = o~-c'§ + o,-c"~%,0,)~§ b + < ;  

K 1 ~ 

where D v is a parabolic cylinder function. Here we make use of  Eq. (3.462.3) from [3, p. 352] with consideration of  the fact 

that for Re v > - 1  the contour K 1 can be deformed m the real axis. For Re v ~ - 1 ,  Eq. (5.4) is valid by the principle of 

analytical extension. 

Integrating by parts, we fred 

= fexp -o~ + b w'+~(w+ b) gl(w,v)dw 
Ki ~ k 

K 1 

Using the representation (v + 1)g~ + w~--ff = 72 + 73 TM + (w + b)wg n and continuing the iteration process, we arrive at the 
expansion [7] 

j -  _ m 

v,(t~v2) [ ~  1 r~, ] ~§ [~ '  1[.,..0 ~'~+_.....Al 
o, " §  = :  + ~ + ~ I ~  , r  

Lm-O 

yo(V) = s,(0,v), r,(v) -- (g(O,v) - ~ -b ,v ) ) /b ,  
y~,,(v) = (v + 1)e.(0,v), 

+ O(oJ-u)] ", 

d e  
~'~.i0') = 0' + 1)(g,,(o,v) - g,,C-b,v))/b + - ' ( - b , v )  dw 

(5.5) 

(5.6) 

The functions gin+ t(w), m >_ 1 are defined by the recursion formula 

(v + 1)g.(w,v) + ~ w , v )  = r~,(v) + r~,§ + w(w + ~)g.§ 

In order to determine the order of magnitude of  the quantities in Eq. (2.5), we find asymptotic expansions of the 
function Uv(b~l/2), o~ --, ~ .  In accordance with Eqs. (9.246.1), (9.246.2) from [3, p. 1079], we have 

> 1; (57)  
(~)V2 

\ ] 
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~ ( ~ w )  _ r__f~_,)exp _ Ibl-'-',o-<'+'>/~, a < 1. (5.8) 

In as much as b = O(X - -  1) (see Eq. (2.2)) and the coefficients G/k are finite functions for small b, we conclude that 

the terms of  the series of  Eq. (2.5) form an asymptotic scale on the interval X E [1 - -  ~o-~', 1 + Xo], where X 0 = const,/z 

being an arbitrary positive number. In fact, from Eqs. (5.5), (5.7), (5.8) we find 

where 

a) r - B~(b)exp(-colbl2/2)aJ -k, J. - 1 ~ (0,201; 

b) oJ-~'+l'2./-~-~'/2 -- B2lbl k-V2, .,,1 - 1 E [ -a J - ' l ,  -~ - "2 ] ;  

C:) o .J -k+l /a , r  "k-l /2 .--. B3w-iii2+l/4,1 ,~ - -  I E [--O.)-~3,0 1, 

,us. > 0,,ul <,u2 < 1/2,`U.,, >~ 1 / 2 ,  

,.<,,: <~,,,.=,(,(~ + ~)~),,,-.-~.(,o(-~-~)-,,.(-,--;)). 
,._-,=..r(~ + ~)=,0(, + "=' :~ 

Restricting ourselves to the main terms of  the expansions in Eqs. (2.5), (5.5), we have 

(( ')  (,) ) l - 2  IS v2(~v2)o, w + Yl --] lSv2(#J~ll2) ~ 
- -  (27i)3/2j~i12i t  ~0  - (5.9) 

We will calculate the coefficients 3 'o( - I /2) ,  Gq(-1/2) with Eq. (5.6): 

( ' )  f - " / ' :  
~o -~. = t~,,,c,)j , (5.10) V2 1/2 / , (-,,) 

zl. tzl 

Equation (5.9) defines the main term of the uniform expansion ~" on the interval X E [1 - -  co-#~, 1 + Xo], # > 0. 

Equation (3.4) can be derived therefrom, but not the expressions of Section 4, since in the latter X < 1 is fixed. 

Note that on the front itself the solution grows as e --, 0. In fact, expanding the indefiniteness in Eq. (5.10) and using 

Eq. (19.3.5) of [4, p. 496], we obtain 

','' ( ') 
- (2~)3/~ ~ r o  - ~  u - w ( o )  - 

w1r 
,~,,,,2r(~),'"= 1,,--. 
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